Let \(A \xleftarrow{F} B \) with \(F \dashv U \). Write \(\eta: 1_A \to FU \), \(\epsilon: UF \to 1_B \) for the unit and counit of the adjointness. Then \(T = (T, \eta, \mu) \) is a triple in \(A \), where \(T = FU \), \(\eta: 1_A \to T \), \(\mu: FeU \to T \), and \(T \xrightarrow{T} T \).

We have the category of \(T \)-algebras \(A^T \) as defined by Eilenberg-Moore, \(F^T : A \to A^U \) by \(x \mapsto (XT, Xu) \), \(U^T : A^T \to A \) by \((x, s) \mapsto x \), and \(F^T \xrightarrow{\mu} U^T \).

\[
\begin{array}{ccc}
A^T & \xrightarrow{\phi} & B \\
U^T \downarrow & & \downarrow \mu \\
A & \xrightarrow{\eta} & U
\end{array}
\]

is defined by \(Y\phi = (YU, YeU) \). The adjoint pair \(F \dashv U \) is tripleable if \(\phi' \xrightarrow{\phi} \phi \) exists such that the unit and counit are isomorphisms \(\eta_A \xrightarrow{\sim} \phi' \phi \), \(\phi' \phi \xrightarrow{\sim} 1_B \). Given \(U \), this property is independent of which left adjoint \(F \) is used, so we also say \(U \) is tripleable in this situation. It seems to be too much to ask for \(\phi' \phi = A^U \), \(\phi' \phi = B \). On the other hand, in category theory, the usual "equivalences" of categories should be replaced by adjoint equivalences.

2. Crude tripleability theorem. If \(B \) has coequalizers and \(U \) preserves and reflects coequalizers, then \(U \) is tripleable.

(It is assumed \(F \dashv U \) exists.)

Proof. \(\phi' \) is the coequalizer \(\xrightarrow{\phi} \).

One way of proving this is by verifying the sequence of set isomorphisms:

- maps \((X, s) \xrightarrow{\phi} Y\phi \)
- \(\to \) maps \(X \xrightarrow{\phi} YU \) such that \(\phi s = F(\psi) \)
- \(\to \) maps \(XT \xrightarrow{\phi} Y \) such that \(\phi T = \psi FG \)
- \(\to \) maps \((X, s) \xrightarrow{\phi} Y \)
If \((X^5) \xrightarrow{\phi} (X^5)\phi^*\phi\) denotes the unit of \(\phi^{-1}\phi\), then \(\phi U = X \eta \tilde{U} kU\).

Now, \(\tilde{X} = \text{coeq}(X^5 U, X^6 F U)\) for if

some \(X^5 U \rightarrow Z\) coequalizes \(X^5 U\) and \(X^6 F U\), then \(X \xrightarrow{X \eta \tilde{U}} Z\) is the unique map such...

But \(kU = \text{coeq}(X^5 U, X^6 U)\) since \(U\) preserves coequalizers. Moreover,

\(\tilde{X}(X^5 U) = \tilde{X} \cdot X \eta \cdot kU = X^5 U \cdot X^5 U \cdot X^6 F U \cdot kU = X^5 U \cdot X^6 F U \cdot kU = X^6 F U \cdot kU\).

Therefore \(X^6 F U \xrightarrow{\eta \phi^* \psi} Y^6 F U\) is an isomorphism, and since \(\tilde{U}\) reflects isomorphism, so is \(\tilde{\phi}\).

The counit \(\phi \phi^* \xrightarrow{\psi} Y\) is defined by its appearance in the diagram below. We proved above that the \(\gamma\)-structure of an algebra is a coequalizer, so if \(U\) is applied to \((X^5 U, X^6 F U, X^6 E U)\), we get a coequalizer diagram in \(A\) (\(X^6 U\) is the \(\gamma\)-structure of the algebra \(X^6\)). But \(U\) reflects coequalizers, so \(Y \xrightarrow{\psi} \text{coeq}(X^5 U, X^6 F U)\). Therefore \(\psi\) is an isomorphism.

3. Contractible coequalizers. A diagram \(Y \xrightarrow{d_0} Y_0 \xrightarrow{d_1} Y\) with \(d_0 d = d_1 d\) looks like the 1-skeleton of an augmented simplicial object. (Here degeneracies will be ignored.) A contraction of a simplicial object is a sequence of maps \(h_n : Y_n \rightarrow Y_{n+1}\) such that \(h_n d_i = d_i h_{n-1}\) for \(0 \leq i \leq n\) and \(h_n d_{n+1} = Y_n\). You can also use \(h_n d_0 = Y_n\), \(h_n d_1 = d_{n+1} Y_n\).

We are led to look at diagrams such that \(d_0 d = d_1 d\), \(h_{n+1} d_1 = Y_n\), \(h_0 d_0 = d_1 h_{n-1}\), \(h_0 d_1 = Y_0\). In this case \(d = \text{coeq}(d_0, d_1)\), for if \(d \circ z = z \circ d\) for \(Y_0 \rightarrow Z\) then \(h_{n+1} z : Y \rightarrow Z\) is the unique map such...

Thus we call such a diagram a **contractible coequalizer diagram**.
We call coequalizer data \(Y_1 \xrightarrow{\alpha_1} Y_0 \xrightarrow{\alpha_2} Z \) a contractible coequalizer diagram. We say \(B \) has U-contractible coequalizers if all U-contractible coequalizer data in \(B \) have coequalizers in \(B \); \(U \) preserves U-contractible coequalizers if whenever \(Y_1 \xrightarrow{\alpha_1} Y_0 \xrightarrow{\alpha_2} Y \) is U-contractible and has a coequalizer \(Y_0 \xrightarrow{\gamma} Y \) in \(B \), then the canonical map \(Z \xrightarrow{\gamma} Y_U \) is an isomorphism; \(U \) reflects U-contractible coequalizers if \(Y_1 \xrightarrow{\alpha_1} Y_0 \xrightarrow{\alpha_2} Y \) being mapped into a contractible coequalizer diagram by \(U \) implies that \(Y_1 \xrightarrow{\alpha_1} Y_0 \xrightarrow{\alpha_2} Y \) is a coequalizer diagram in \(B \). (\(Y_i \xrightarrow{\gamma} Y \) will not necessarily be contractible in \(B \).)

4. Precise triple ableness theorem. \(U \) is tripleable \(\iff \) \(B \) has, and \(U \) preserves and reflects, U-contractible coequalizers.

Proof. \(\iff \) is clear. One only has to notice that all coequalizers arising in the proof of the crude theorem were U-contractible.

\(\Rightarrow \): We can assume \(B = A^U \) and prove that \(A^U \) has \(U^U \)-contractible coequalizers. (The (dual) example of comodules over a non-flat coalgebra shows that \(A^U \) need not have all coequalizers. But it follows from a result of Linien's alluded to below that \(A^U \) has all coequalizers if \(A \) is self.) Let \((X_i, \xi_i) \xrightarrow{\partial_i} (X_0, \xi_0) \) be \(U \)-contractible, i.e. we have the accompanying diagram in \(A \). Let \(X \xrightarrow{\xi} X \) be \(h_{\xi T} \cdot \xi_0 \cdot d \). Then

\[
dT. \xi = \xi_0 \cdot d.
\]

For

\[
dT. \xi = dT. h_{-1} T. \xi_0 \cdot d = (dh_{-1}) T. \xi_0 \cdot d =
\]

For
\[(h_0, d_0)T \cdot \xi_0 \cdot d_0 = h_0T \cdot \xi_0 \cdot d_0 = h_0T \cdot \xi_1 \cdot d_1 = h_0T \cdot \xi_1 \cdot d_1 = (h_0, d_0)T \cdot \xi_0 \cdot d_0 = \xi_0 \cdot d_0. \]

This shows that \(d : X_0 \to X \) is compatible with \(T \)-structures. Since \(h_1 \cdot d = X \), it follows that \((X, \xi) \) is a \(T \)-algebra. Also if a different contraction \(h_0', h_1' \) were used, and \(\xi' \) defined as \(h_1' \cdot T \cdot \xi_0 \cdot d_1 \), then

\[\xi' = \xi, \]

since \(\xi = (h_1, d)T \cdot \xi = h_1T \cdot d \cdot \xi = h_1T \cdot \xi_0 \cdot d_1 \), and \(\xi' = (h_1', d)T \cdot \xi = h_1'T \cdot \xi_0 \cdot d_1 \) also. Thus the \(T \)-structure \(\xi \) is well-defined.

Finally, \(d = \text{coeq} (d_0, d_1) \) for if \((X_0, \xi_0) \xrightarrow{\delta} (Y, \theta) \) coequalizes \(d_0, d_1 \), then \((X, \xi) \xrightarrow{\delta} (Y, \theta) \) is the unique \(\star \ystem{(*)} \) The above construction shows that \(UT \) preserves and reflects \(UT \)-contractible coequalizers.

\(\star \) Note that \(h_1 \) is not an algebra map, but \(h_1 \cdot y \) is.

5. Remarks. It should be possible to improve the above theorem (apart from streamlining the exposition). Conditions implying triple-ableness should be found which are easier to verify in practice. For instance, the following \(\star \ystem{(*)} \) true:

\[U \text{ is tripleable } \iff B \text{ has and } U \text{ preserves } U \text{-contractible coequalizers, and } U \text{ reflects isomorphisms.} \]

It seems to follow without much difficulty, from this, that algebraic or variable categories are tripleable \(\star \ystem{(*)} \) (and Linton can prove tripleable categories are variable).